make_psf_model_image#
- photutils.psf.make_psf_model_image(shape, psf_model, n_sources, *, model_shape=None, min_separation=1, border_size=None, seed=0, progress_bar=False, **kwargs)[source]#
Make an example image containing PSF model images.
Source parameters are randomly generated using an optional
seed
.- Parameters:
- shape2-tuple of int
The shape of the output image.
- psf_model2D
astropy.modeling.Model
The PSF model. The model must have parameters named
x_0
,y_0
, andflux
, corresponding to the center (x, y) position and flux, or it must have ‘x_name’, ‘y_name’, and ‘flux_name’ attributes that map to the x, y, and flux parameters (i.e., a model output frommake_psf_model
). The model must be two-dimensional such that it accepts 2 inputs (e.g., x and y) and provides 1 output.- n_sourcesint
The number of sources to generate. If
min_separation
is too large, the number of requested sources may not fit within the givenshape
and therefore the number of sources generated may be less thann_sources
.- model_shape
None
or 2-tuple of int, optional The shape around the center (x, y) position that will used to evaluate the
psf_model
. IfNone
, then the shape will be determined from thepsf_model
bounding box (an error will be raised if the model does not have a bounding box).- min_separationfloat, optional
The minimum separation between the centers of two sources. Note that if the minimum separation is too large, the number of sources generated may be less than
n_sources
.- border_size
None
, tuple of 2 int, or int, optional The (ny, nx) size of the exclusion border around the image edges where no sources will be generated that have centers within the border region. If a single integer is provided, it will be used for both dimensions. If
None
, then a border size equal to half the (y, x) size of the evaluated PSF model (taking any oversampling into account) will be used.- seedint, optional
A seed to initialize the
numpy.random.BitGenerator
. IfNone
, then fresh, unpredictable entropy will be pulled from the OS.- progress_barbool, optional
Whether to display a progress bar when creating the sources. The progress bar requires that the tqdm optional dependency be installed. Note that the progress bar does not currently work in the Jupyter console due to limitations in
tqdm
.- **kwargs
Keyword arguments are accepted for additional model parameters. The values should be 2-tuples of the lower and upper bounds for the parameter range. The parameter values will be uniformly distributed between the lower and upper bounds, inclusively. If the parameter is not in the input
psf_model
parameter names, it will be ignored.
- Returns:
Examples
>>> from photutils.psf import CircularGaussianPRF, make_psf_model_image >>> shape = (150, 200) >>> psf_model = CircularGaussianPRF(fwhm=3.5) >>> n_sources = 10 >>> data, params = make_psf_model_image(shape, psf_model, n_sources, ... flux=(100, 250), ... min_separation=10, ... seed=0) >>> params['x_0'].info.format = '.4f' # optional format >>> params['y_0'].info.format = '.4f' >>> params['flux'].info.format = '.4f' >>> print(params) id x_0 y_0 flux --- -------- -------- -------- 1 125.2010 72.3184 147.9522 2 57.6408 39.1380 128.1262 3 15.5391 115.4520 200.8790 4 11.0411 131.7530 129.2661 5 157.6417 43.6615 186.6532 6 175.9470 80.2172 190.3359 7 142.2274 132.7563 244.3635 8 108.0270 13.4284 110.8398 9 180.0533 106.0888 174.9959 10 158.1171 90.3260 211.6146
import matplotlib.pyplot as plt from photutils.psf import CircularGaussianPRF, make_psf_model_image shape = (150, 200) psf_model = CircularGaussianPRF(fwhm=3.5) n_sources = 10 data, params = make_psf_model_image(shape, psf_model, n_sources, flux=(100, 250), min_separation=10, seed=0) plt.imshow(data, origin='lower')
(
Source code
,png
,hires.png
,pdf
,svg
)import matplotlib.pyplot as plt from photutils.psf import CircularGaussianPRF, make_psf_model_image shape = (150, 200) psf_model = CircularGaussianPRF(fwhm=3.5) n_sources = 10 data, params = make_psf_model_image(shape, psf_model, n_sources, flux=(100, 250), min_separation=10, seed=0, sigma=(1, 2)) plt.imshow(data, origin='lower')
(
Source code
,png
,hires.png
,pdf
,svg
)