.. _background: Background Estimation (`photutils.background`) ============================================== Introduction ------------ To accurately measure the photometry and morphological properties of astronomical sources, one requires an accurate estimate of the background, which can be from both the sky and the detector. Similarly, having an accurate estimate of the background noise is important for determining the significance of source detections and for estimating photometric errors. Unfortunately, accurate background and background noise estimation is a difficult task. Further, because astronomical images can cover a wide variety of scenes, there is not a single background estimation method that will always be applicable. Photutils provides tools for estimating the background and background noise in your data, but they will likely require some tweaking to optimize the background estimate for your data. Scalar Background and Noise Estimation -------------------------------------- Simple Statistics ^^^^^^^^^^^^^^^^^ If the background level and noise are relatively constant across an image, the simplest way to estimate these values is to derive scalar quantities using simple approximations. When computing the image statistics one must take into account the astronomical sources present in the images, which add a positive tail to the distribution of pixel intensities. For example, one may consider using the image median as the background level and the image standard deviation as the 1-sigma background noise, but the resulting values are biased by the presence of real sources. A slightly better method involves using statistics that are robust against the presence of outliers, such as the biweight location for the background level and biweight scale or normalized `median absolute deviation (MAD) `__ for the background noise estimation. However, for most astronomical scenes these methods will also be biased by the presence of astronomical sources in the image. As an example, we load a synthetic image comprised of 100 sources with a Gaussian-distributed background whose mean is 5 and standard deviation is 2:: >>> from photutils.datasets import make_100gaussians_image >>> data = make_100gaussians_image() Let's plot the image: .. doctest-skip:: >>> import matplotlib.pyplot as plt >>> from astropy.visualization import SqrtStretch >>> from astropy.visualization.mpl_normalize import ImageNormalize >>> norm = ImageNormalize(stretch=SqrtStretch()) >>> plt.imshow(data, norm=norm, origin='lower', cmap='Greys_r', ... interpolation='nearest') .. plot:: import matplotlib.pyplot as plt from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.datasets import make_100gaussians_image data = make_100gaussians_image() norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data, norm=norm, origin='lower', cmap='Greys_r', interpolation='nearest') plt.title('Data') The image median and biweight location are both larger than the true background level of 5:: >>> import numpy as np >>> from astropy.stats import biweight_location >>> print(np.median(data)) # doctest: +FLOAT_CMP 5.225529518399048 >>> print(biweight_location(data)) # doctest: +FLOAT_CMP 5.186759755495727 Similarly, using the median absolute deviation to estimate the background noise level gives a value that is larger than the true value of 2:: >>> from astropy.stats import mad_std >>> print(mad_std(data)) # doctest: +FLOAT_CMP 2.1443760096598914 Sigma Clipping Sources ^^^^^^^^^^^^^^^^^^^^^^ The most widely used technique to remove the sources from the image statistics is called sigma clipping. Briefly, pixels that are above or below a specified sigma level from the median are discarded and the statistics are recalculated. The procedure is typically repeated over a number of iterations or until convergence is reached. This method provides a better estimate of the background and background noise levels:: >>> from astropy.stats import sigma_clipped_stats >>> mean, median, std = sigma_clipped_stats(data, sigma=3.0) >>> print((mean, median, std)) # doctest: +FLOAT_CMP (5.199138651621793, 5.155587433358291, 2.094275212132969) Masking Sources ^^^^^^^^^^^^^^^ An even better procedure is to exclude the sources in the image by masking them. This technique requires one to :ref:`identify the sources in the data `, which in turn depends on the background and background noise. Therefore, this method for estimating the background and background RMS requires an iterative procedure. One method to create a source mask is to use a :ref:`segmentation image `. Here we use the `~photutils.segmentation.detect_threshold` convenience function to get a rough estimate of the threshold at the 2-sigma background noise level. Then we use the `~photutils.segmentation.detect_sources` function to generate a `~photutils.segmentation.SegmentationImage`. Finally, we use the :meth:`~photutils.segmentation.SegmentationImage.make_source_mask` method with a circular dilation footprint to create the source mask: .. doctest-requires:: scipy >>> from astropy.stats import sigma_clipped_stats, SigmaClip >>> from photutils.segmentation import detect_threshold, detect_sources >>> from photutils.utils import circular_footprint >>> sigma_clip = SigmaClip(sigma=3.0, maxiters=10) >>> threshold = detect_threshold(data, nsigma=2.0, sigma_clip=sigma_clip) >>> segment_img = detect_sources(data, threshold, npixels=10) >>> footprint = circular_footprint(radius=10) >>> mask = segment_img.make_source_mask(footprint=footprint) >>> mean, median, std = sigma_clipped_stats(data, sigma=3.0, mask=mask) >>> print((mean, median, std)) # doctest: +FLOAT_CMP (4.994042038715669, 4.991333562774164, 1.9699473426119296) The source detection and masking procedure can be iterated further. Even with one iteration we are within 0.2% of the true background value and 1.5% of the true background RMS. .. _scipy: https://scipy.org/ 2D Background and Noise Estimation ---------------------------------- If the background or the background noise varies across the image, then you will generally want to generate a 2D image of the background and background RMS (or compute these values locally). This can be accomplished by applying the above techniques to subregions of the image. A common procedure is to use sigma-clipped statistics in each mesh of a grid that covers the input data to create a low-resolution background image. The final background or background RMS image can then be generated by interpolating the low-resolution image. Photutils provides the :class:`~photutils.background.Background2D` class to estimate the 2D background and background noise in an astronomical image. :class:`~photutils.background.Background2D` requires the size of the box (``box_size``) in which to estimate the background. Selecting the box size requires some care by the user. The box size should generally be larger than the typical size of sources in the image, but small enough to encapsulate any background variations. For best results, the box size should also be chosen so that the data are covered by an integer number of boxes in both dimensions. If that is not the case, the ``edge_method`` keyword determines whether to pad or crop the image such that there is an integer multiple of the ``box_size`` in both dimensions. The background level in each of the meshes is calculated using the function or callable object (e.g., class instance) input via ``bkg_estimator`` keyword. Photutils provides a several background classes that can be used: * `~photutils.background.MeanBackground` * `~photutils.background.MedianBackground` * `~photutils.background.ModeEstimatorBackground` * `~photutils.background.MMMBackground` * `~photutils.background.SExtractorBackground` * `~photutils.background.BiweightLocationBackground` The default is a `~photutils.background.SExtractorBackground` instance. For this method, the background in each mesh is calculated as ``(2.5 * median) - (1.5 * mean)``. However, if ``(mean - median) / std > 0.3`` then the ``median`` is used instead. Likewise, the background RMS level in each mesh is calculated using the function or callable object input via the ``bkgrms_estimator`` keyword. Photutils provides the following classes for this purpose: * `~photutils.background.StdBackgroundRMS` * `~photutils.background.MADStdBackgroundRMS` * `~photutils.background.BiweightScaleBackgroundRMS` For even more flexibility, users may input a custom function or callable object to the ``bkg_estimator`` and/or ``bkgrms_estimator`` keywords. By default, the ``bkg_estimator`` and ``bkgrms_estimator`` are applied to sigma clipped data. Sigma clipping is defined by inputting a :class:`astropy.stats.SigmaClip` object to the ``sigma_clip`` keyword. The default is to perform sigma clipping with ``sigma=3`` and ``maxiters=10``. Sigma clipping can be turned off by setting ``sigma_clip=None``. After the background level has been determined in each of the boxes, the low-resolution background image can be median filtered, with a window of size of ``filter_size``, to suppress local under or over estimations (e.g., due to bright galaxies in a particular box). Likewise, the median filter can be applied only to those boxes where the background level is above a specified threshold (``filter_threshold``). The low-resolution background and background RMS images are resized to the original data size using the function or callable object input via the ``interpolator`` keyword. Photutils provides two interpolator classes: :class:`~photutils.background.BkgZoomInterpolator` (default), which performs spline interpolation, and :class:`~photutils.background.BkgIDWInterpolator`, which uses inverse-distance weighted (IDW) interpolation. For this example, we will create a test image by adding a strong background gradient to the image defined above:: >>> ny, nx = data.shape >>> y, x = np.mgrid[:ny, :nx] >>> gradient = x * y / 5000.0 >>> data2 = data + gradient >>> plt.imshow(data2, norm=norm, origin='lower', cmap='Greys_r', ... interpolation='nearest') # doctest: +SKIP .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.datasets import make_100gaussians_image data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data2, norm=norm, origin='lower', cmap='Greys_r', interpolation='nearest') plt.title('Data with added background gradient') We start by creating a `~photutils.background.Background2D` object using a box size of 50x50 and a 3x3 median filter. We will estimate the background level in each mesh as the sigma-clipped median using an instance of :class:`~photutils.background.MedianBackground`. .. doctest-requires:: scipy >>> from astropy.stats import SigmaClip >>> from photutils.background import Background2D, MedianBackground >>> sigma_clip = SigmaClip(sigma=3.0) >>> bkg_estimator = MedianBackground() >>> bkg = Background2D(data2, (50, 50), filter_size=(3, 3), ... sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) The 2D background and background RMS images are retrieved using the ``background`` and ``background_rms`` attributes, respectively, on the returned object. The low-resolution versions of these images are stored in the ``background_mesh`` and ``background_rms_mesh`` attributes, respectively. The global median value of the low-resolution background and background RMS image can be accessed with the ``background_median`` and ``background_rms_median`` attributes, respectively: .. doctest-requires:: scipy >>> print(bkg.background_median) # doctest: +FLOAT_CMP 10.821997862561792 >>> print(bkg.background_rms_median) # doctest: +FLOAT_CMP 2.298820539683762 Let's plot the background image: .. doctest-skip:: >>> plt.imshow(bkg.background, origin='lower', cmap='Greys_r', ... interpolation='nearest') .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.stats import SigmaClip from photutils.background import Background2D, MedianBackground from photutils.datasets import make_100gaussians_image data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient sigma_clip = SigmaClip(sigma=3.0) bkg_estimator = MedianBackground() bkg = Background2D(data2, (50, 50), filter_size=(3, 3), sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) plt.imshow(bkg.background, origin='lower', cmap='Greys_r', interpolation='nearest') plt.title('Estimated Background') and the background-subtracted image: .. doctest-skip:: >>> plt.imshow(data2 - bkg.background, norm=norm, origin='lower', ... cmap='Greys_r', interpolation='nearest') .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.stats import SigmaClip from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.background import Background2D, MedianBackground from photutils.datasets import make_100gaussians_image data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient sigma_clip = SigmaClip(sigma=3.0) bkg_estimator = MedianBackground() bkg = Background2D(data2, (50, 50), filter_size=(3, 3), sigma_clip=sigma_clip, bkg_estimator=bkg_estimator) norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data2 - bkg.background, norm=norm, origin='lower', cmap='Greys_r', interpolation='nearest') plt.title('Background-subtracted Data') Masking ^^^^^^^ Masks can also be input into `~photutils.background.Background2D`. The ``mask`` keyword can be used to mask sources or bad pixels in the image prior to estimating the background levels. Additionally, the ``coverage_mask`` keyword can be used to mask blank regions without data coverage (e.g., from a rotated image or an image from a mosaic). Otherwise, the data values in the regions without coverage (usually zeros or NaNs) will adversely affect the background statistics. Unlike ``mask``, ``coverage_mask`` is applied to the output background and background RMS maps. The ``fill_value`` keyword defines the value assigned in the output background and background RMS maps where the input ``coverage_mask`` is `True`. Let's create a rotated image that has blank areas and plot it (NOTE: this example requires `scipy`_): .. doctest-requires:: scipy >>> from scipy.ndimage import rotate >>> data3 = rotate(data2, -45.0) >>> norm = ImageNormalize(stretch=SqrtStretch()) # doctest: +SKIP >>> plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm, ... interpolation='nearest') # doctest: +SKIP .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.datasets import make_100gaussians_image from scipy.ndimage.interpolation import rotate data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient data3 = rotate(data2, -45.0) norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm, interpolation='nearest') plt.title('Data with added background gradient') Now we create a coverage mask and input it into `~photutils.background.Background2D` to exclude the regions where we have no data. For this example, we set the ``fill_value`` to 0.0. For real data, one can usually create a coverage mask from a weight or noise image. In this example we also use a smaller box size to help capture the strong gradient in the background. We also increase the value of the ``exclude_percentile`` keyword to include more boxes around the edge of the rotated image: .. doctest-requires:: scipy >>> coverage_mask = (data3 == 0) >>> bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3), ... coverage_mask=coverage_mask, fill_value=0.0, ... exclude_percentile=50.0) Note that the ``coverage_mask`` is applied to the output background image (values assigned to ``fill_value``): .. doctest-requires:: scipy >>> norm = ImageNormalize(stretch=SqrtStretch()) # doctest: +SKIP >>> plt.imshow(bkg3.background, origin='lower', cmap='Greys_r', norm=norm, ... interpolation='nearest') # doctest: +SKIP .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.background import Background2D from photutils.datasets import make_100gaussians_image from scipy.ndimage.interpolation import rotate data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient data3 = rotate(data2, -45.0) coverage_mask = (data3 == 0) bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3), coverage_mask=coverage_mask, fill_value=0.0, exclude_percentile=50.0) norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(bkg3.background, origin='lower', cmap='Greys_r', norm=norm, interpolation='nearest') plt.title('Estimated Background') Finally, let's subtract the background from the image and plot it: .. doctest-skip:: >>> norm = ImageNormalize(stretch=SqrtStretch()) >>> plt.imshow(data3 - bkg3.background, origin='lower', cmap='Greys_r', ... norm=norm, interpolation='nearest') .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.background import Background2D from photutils.datasets import make_100gaussians_image from scipy.ndimage.interpolation import rotate data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient data3 = rotate(data2, -45.0) coverage_mask = (data3 == 0) bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3), coverage_mask=coverage_mask, fill_value=0.0, exclude_percentile=50.0) norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data3 - bkg3.background, origin='lower', cmap='Greys_r', norm=norm, interpolation='nearest') plt.title('Background-subtracted Data') If there is any small residual background still present in the image, the background subtraction can be improved by masking the sources and/or through further iterations. Plotting Meshes ^^^^^^^^^^^^^^^ Finally, the meshes that were used in generating the 2D background can be plotted on the original image using the :meth:`~photutils.background.Background2D.plot_meshes` method. Here we zoom in on a small portion of the image to show the background meshes. Meshes without a center marker were excluded. .. doctest-skip:: >>> plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm, ... interpolation='nearest') >>> bkg3.plot_meshes(outlines=True, marker='.', color='cyan', alpha=0.3) >>> plt.xlim(0, 250) >>> plt.ylim(0, 250) .. plot:: import matplotlib.pyplot as plt import numpy as np from astropy.visualization import SqrtStretch from astropy.visualization.mpl_normalize import ImageNormalize from photutils.background import Background2D from photutils.datasets import make_100gaussians_image from scipy.ndimage.interpolation import rotate data = make_100gaussians_image() ny, nx = data.shape y, x = np.mgrid[:ny, :nx] gradient = x * y / 5000.0 data2 = data + gradient data3 = rotate(data2, -45.0) coverage_mask = (data3 == 0) bkg3 = Background2D(data3, (15, 15), filter_size=(3, 3), coverage_mask=coverage_mask, fill_value=0.0, exclude_percentile=50.0) norm = ImageNormalize(stretch=SqrtStretch()) plt.imshow(data3, origin='lower', cmap='Greys_r', norm=norm, interpolation='nearest') bkg3.plot_meshes(outlines=True, marker='.', color='cyan', alpha=0.3) plt.xlim(0, 250) plt.ylim(0, 250) Reference/API ------------- .. automodapi:: photutils.background :no-heading: :inherited-members: