Source code for photutils.psf.utils

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module provides utilities for PSF-fitting photometry.
"""

import warnings

import numpy as np
from astropy.modeling import Model
from astropy.table import QTable
from astropy.units import Quantity
from astropy.utils.exceptions import AstropyUserWarning
from scipy import interpolate

from photutils.centroids import centroid_com
from photutils.psf.functional_models import CircularGaussianPRF
from photutils.utils import CutoutImage
from photutils.utils._parameters import as_pair

__all__ = ['fit_2dgaussian', 'fit_fwhm']


[docs] def fit_2dgaussian(data, *, xypos=None, fwhm=None, fix_fwhm=True, fit_shape=None, mask=None, error=None): """ Fit a 2D Gaussian model to one or more sources in an image. This convenience function uses a `~photutils.psf.CircularGaussianPRF` model to fit the sources using the `~photutils.psf.PSFPhotometry` class. Non-finite values (e.g., NaN or inf) in the ``data`` array are automatically masked. Parameters ---------- data : 2D array The 2D array of the image. The input array must be background subtracted. xypos : array-like, optional The initial (x, y) pixel coordinates of the sources. If `None`, then one source will be fit with an initial position using the center-of-mass centroid of the ``data`` array. fwhm : float, optional The initial guess for the FWHM of the Gaussian PSF model. If `None`, then the initial guess is half the mean of the x and y sizes of the ``fit_shape`` values. fix_fwhm : bool, optional Whether to fix the FWHM of the Gaussian PSF model during the fitting process. fit_shape : int or tuple of two ints, optional The shape of the fitting region. If a scalar, then it is assumed to be a square. If `None`, then the shape of the input ``data`` will be used. mask : array-like (bool), optional A boolean mask with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : 2D array, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. If a `~astropy.units.Quantity` array, then ``data`` must also be a `~astropy.units.Quantity` array with the same units. Returns ------- result : `~photutils.psf.PSFPhotometry` The PSF-fitting photometry results. See Also -------- fit_fwhm : Fit the FWHM of one or more sources in an image. Notes ----- The source(s) are fit with a `~photutils.psf.CircularGaussianPRF` model using the `~photutils.psf.PSFPhotometry` class. The initial guess for the flux is the sum of the pixel values within the fitting region. If ``fwhm`` is `None`, then the initial guess for the FWHM is half the mean of the x and y sizes of the ``fit_shape`` values. Examples -------- Fit a 2D Gaussian model to a image containing only one source (e.g., a cutout image): >>> import numpy as np >>> from photutils.psf import CircularGaussianPRF, fit_2dgaussian >>> yy, xx = np.mgrid[:51, :51] >>> model = CircularGaussianPRF(x_0=22.17, y_0=28.87, fwhm=3.123, flux=9.7) >>> data = model(xx, yy) >>> fit = fit_2dgaussian(data, fix_fwhm=False) >>> phot_tbl = fit.results # doctest: +FLOAT_CMP >>> cols = ['x_fit', 'y_fit', 'fwhm_fit', 'flux_fit'] >>> for col in cols: ... phot_tbl[col].info.format = '.4f' # optional format >>> print(phot_tbl[['id'] + cols]) id x_fit y_fit fwhm_fit flux_fit --- ------- ------- -------- -------- 1 22.1700 28.8700 3.1230 9.7000 Fit a 2D Gaussian model to multiple sources in an image: >>> import numpy as np >>> from photutils.detection import DAOStarFinder >>> from photutils.psf import (CircularGaussianPRF, fit_2dgaussian, ... make_psf_model_image) >>> model = CircularGaussianPRF() >>> data, sources = make_psf_model_image((100, 100), model, 5, ... min_separation=25, ... model_shape=(15, 15), ... flux=(100, 200), fwhm=[3, 8]) >>> finder = DAOStarFinder(0.1, 5) >>> finder_tbl = finder(data) >>> xypos = list(zip(sources['x_0'], sources['y_0'])) >>> psfphot = fit_2dgaussian(data, xypos=xypos, fit_shape=7, ... fix_fwhm=False) >>> phot_tbl = psfphot.results >>> len(phot_tbl) 5 Here we show only a few columns of the photometry table: >>> cols = ['x_fit', 'y_fit', 'fwhm_fit', 'flux_fit'] >>> for col in cols: ... phot_tbl[col].info.format = '.4f' # optional format >>> print(phot_tbl[['id'] + cols]) id x_fit y_fit fwhm_fit flux_fit --- ------- ------- -------- -------- 1 61.7787 74.6905 5.6947 147.9988 2 30.2017 27.5858 5.2138 123.2373 3 10.5237 82.3776 7.6551 180.1881 4 8.4214 12.0369 3.2026 192.3530 5 76.9412 35.9061 6.6600 126.6130 """ # prevent circular import from photutils.psf.photometry import PSFPhotometry if xypos is None: xypos = centroid_com(data) xypos = np.atleast_2d(xypos) if fit_shape is None: fit_shape = data.shape else: fit_shape = as_pair('fit_shape', fit_shape, lower_bound=(1, 0), check_odd=True) flux_init = [] for yxpos in xypos[:, ::-1]: cutout = CutoutImage(data, yxpos, tuple(fit_shape)) flux_init.append(np.sum(cutout.data)) if isinstance(data, Quantity): flux_init <<= data.unit init_params = QTable() init_params['x'] = xypos[:, 0] init_params['y'] = xypos[:, 1] init_params['flux'] = flux_init if fwhm is None: fwhm = np.mean(fit_shape) / 2.0 init_params['fwhm'] = fwhm model = CircularGaussianPRF(fwhm=fwhm) model.fwhm.min = 0.0 if not fix_fwhm: model.fwhm.fixed = False phot = PSFPhotometry(model, fit_shape) _ = phot(data, mask=mask, error=error, init_params=init_params) return phot
[docs] def fit_fwhm(data, *, xypos=None, fwhm=None, fit_shape=None, mask=None, error=None): """ Fit the FWHM of one or more sources in an image. This convenience function uses a `~photutils.psf.CircularGaussianPRF` model to fit the sources using the `~photutils.psf.PSFPhotometry` class. Non-finite values (e.g., NaN or inf) in the ``data`` array are automatically masked. Parameters ---------- data : 2D array The 2D array of the image. The input array must be background subtracted. xypos : array-like, optional The initial (x, y) pixel coordinates of the sources. If `None`, then one source will be fit with an initial position using the center-of-mass centroid of the ``data`` array. fwhm : float, optional The initial guess for the FWHM of the Gaussian PSF model. If `None`, then the initial guess is half the mean of the x and y sizes of the ``fit_shape`` values. fit_shape : int or tuple of two ints, optional The shape of the fitting region. If a scalar, then it is assumed to be a square. If `None`, then the shape of the input ``data`` will be used. mask : array-like (bool), optional A boolean mask with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. error : 2D array, optional The pixel-wise Gaussian 1-sigma errors of the input ``data``. ``error`` is assumed to include *all* sources of error, including the Poisson error of the sources (see `~photutils.utils.calc_total_error`) . ``error`` must have the same shape as the input ``data``. If a `~astropy.units.Quantity` array, then ``data`` must also be a `~astropy.units.Quantity` array with the same units. Returns ------- fwhm : `~numpy.ndarray` The FWHM of the sources. Note that the returned FWHM values are always positive. See Also -------- fit_2dgaussian : Fit a 2D Gaussian model to one or more sources in an image. Notes ----- The source(s) are fit using the :func:`fit_2dgaussian` function, which uses a `~photutils.psf.CircularGaussianPRF` model with the `~photutils.psf.PSFPhotometry` class. The initial guess for the flux is the sum of the pixel values within the fitting region. If ``fwhm`` is `None`, then the initial guess for the FWHM is half the mean of the x and y sizes of the ``fit_shape`` values. Examples -------- Fit the FWHM of a single source (e.g., a cutout image): >>> import numpy as np >>> from photutils.psf import CircularGaussianPRF, fit_fwhm >>> yy, xx = np.mgrid[:51, :51] >>> model = CircularGaussianPRF(x_0=22.17, y_0=28.87, fwhm=3.123, flux=9.7) >>> data = model(xx, yy) >>> fwhm = fit_fwhm(data) >>> fwhm # doctest: +FLOAT_CMP array([3.123]) Fit the FWHMs of multiple sources in an image: >>> import numpy as np >>> from photutils.detection import DAOStarFinder >>> from photutils.psf import (CircularGaussianPRF, fit_fwhm, ... make_psf_model_image) >>> model = CircularGaussianPRF() >>> data, sources = make_psf_model_image((100, 100), model, 5, ... min_separation=25, ... model_shape=(15, 15), ... flux=(100, 200), fwhm=[3, 8]) >>> finder = DAOStarFinder(0.1, 5) >>> finder_tbl = finder(data) >>> xypos = list(zip(sources['x_0'], sources['y_0'])) >>> fwhms = fit_fwhm(data, xypos=xypos, fit_shape=7) >>> fwhms # doctest: +FLOAT_CMP array([5.69467204, 5.21376414, 7.65508658, 3.20255356, 6.66003098]) """ with warnings.catch_warnings(record=True) as fit_warnings: phot = fit_2dgaussian(data, xypos=xypos, fwhm=fwhm, fix_fwhm=False, fit_shape=fit_shape, mask=mask, error=error) if len(fit_warnings) > 0: warnings.warn('One or more fit(s) may not have converged. Please ' 'carefully check your results. You may need to change ' 'the input "xypos" and "fit_shape" parameters.', AstropyUserWarning) return np.array(phot.results['fwhm_fit'])
def _interpolate_missing_data(data, mask, method='cubic'): """ Interpolate missing data as identified by the ``mask`` keyword. Parameters ---------- data : 2D `~numpy.ndarray` An array containing the 2D image. mask : 2D bool `~numpy.ndarray` A 2D boolean mask array with the same shape as the input ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. The masked data points are those that will be interpolated. method : {'cubic', 'nearest'}, optional The method of used to interpolate the missing data: * ``'cubic'``: Masked data are interpolated using 2D cubic splines. This is the default. * ``'nearest'``: Masked data are interpolated using nearest-neighbor interpolation. Returns ------- data_interp : 2D `~numpy.ndarray` The interpolated 2D image. """ data_interp = np.copy(data) if len(data_interp.shape) != 2: raise ValueError("'data' must be a 2D array.") if mask.shape != data.shape: raise ValueError("'mask' and 'data' must have the same shape.") # initialize the interpolator y, x = np.indices(data_interp.shape) xy = np.dstack((x[~mask].ravel(), y[~mask].ravel()))[0] z = data_interp[~mask].ravel() # interpolate the missing data if method == 'nearest': interpol = interpolate.NearestNDInterpolator(xy, z) elif method == 'cubic': interpol = interpolate.CloughTocher2DInterpolator(xy, z) else: raise ValueError('Unsupported interpolation method.') xy_missing = np.dstack((x[mask].ravel(), y[mask].ravel()))[0] data_interp[mask] = interpol(xy_missing) return data_interp def _validate_psf_model(psf_model): """ Validate the PSF model. The PSF model must be a subclass of `astropy .modeling.Fittable2DModel`. It must also be two-dimensional and have a single output. Parameters ---------- psf_model : `astropy.modeling.Fittable2DModel` The PSF model to validate. Returns ------- psf_model : `astropy.modeling.Model` The validated PSF model. Raises ------ TypeError If the PSF model is not an Astropy Model subclass. ValueError If the PSF model is not two-dimensional with n_inputs=2 and n_outputs=1. """ if not isinstance(psf_model, Model): raise TypeError('psf_model must be an Astropy Model subclass.') if psf_model.n_inputs != 2 or psf_model.n_outputs != 1: raise ValueError('psf_model must be two-dimensional with ' 'n_inputs=2 and n_outputs=1.') return psf_model def _get_psf_model_params(psf_model): """ Get the names of the PSF model parameters corresponding to x, y, and flux. The PSF model must have parameters called 'x_0', 'y_0', and 'flux' or it must have 'x_name', 'y_name', and 'flux_name' attributes (i.e., output from `make_psf_model`). Otherwise, a `ValueError` is raised. The PSF model must be a subclass of `astropy.modeling.Model`. It must also be two-dimensional and have a single output. Parameters ---------- psf_model : `astropy.modeling.Model` The PSF model to validate. Returns ------- model_params : tuple A tuple of the PSF model parameter names. """ psf_model = _validate_psf_model(psf_model) params1 = ('x_0', 'y_0', 'flux') params2 = ('x_name', 'y_name', 'flux_name') if all(name in psf_model.param_names for name in params1): model_params = params1 elif all(params := [getattr(psf_model, name, None) for name in params2]): model_params = tuple(params) else: msg = 'Invalid PSF model - could not find PSF parameter names.' raise ValueError(msg) return model_params