# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module provides a base class for profiles.
"""
import abc
import warnings
import numpy as np
from astropy.utils import lazyproperty
from astropy.utils.exceptions import AstropyUserWarning
from photutils.utils._quantity_helpers import process_quantities
from photutils.utils._stats import nanmax, nansum
__all__ = ['ProfileBase']
[docs]
class ProfileBase(metaclass=abc.ABCMeta):
"""
Abstract base class for profile classes.
Parameters
----------
data : 2D `~numpy.ndarray`
The 2D data array. The data should be background-subtracted.
xycen : tuple of 2 floats
The ``(x, y)`` pixel coordinate of the source center.
radii : 1D float `~numpy.ndarray`
An array of radii defining the radial bins. ``radii``
must be strictly increasing with a minimum value greater
than or equal to zero, and contain at least 2 values.
The radial spacing does not need to be constant. For
`~photutils.profiles.RadialProfile`, the input radii are the
*edges* of the radial annulus bins, and the output `radius`
represents the bin centers.
error : 2D `~numpy.ndarray`, optional
The 1-sigma errors of the input ``data``. ``error`` is assumed
to include all sources of error, including the Poisson error
of the sources (see `~photutils.utils.calc_total_error`) .
``error`` must have the same shape as the input ``data``.
mask : 2D bool `~numpy.ndarray`, optional
A boolean mask with the same shape as ``data`` where a `True`
value indicates the corresponding element of ``data`` is masked.
Masked data are excluded from all calculations.
method : {'exact', 'center', 'subpixel'}, optional
The method used to determine the overlap of the aperture on the
pixel grid:
* ``'exact'`` (default):
The exact fractional overlap of the aperture and each pixel is
calculated. The aperture weights will contain values between 0
and 1.
* ``'center'``:
A pixel is considered to be entirely in or out of the aperture
depending on whether its center is in or out of the aperture.
The aperture weights will contain values only of 0 (out) and 1
(in).
* ``'subpixel'``:
A pixel is divided into subpixels (see the ``subpixels``
keyword), each of which are considered to be entirely in or
out of the aperture depending on whether its center is in
or out of the aperture. If ``subpixels=1``, this method is
equivalent to ``'center'``. The aperture weights will contain
values between 0 and 1.
subpixels : int, optional
For the ``'subpixel'`` method, resample pixels by this factor
in each dimension. That is, each pixel is divided into
``subpixels**2`` subpixels. This keyword is ignored unless
``method='subpixel'``.
"""
def __init__(self, data, xycen, radii, *, error=None, mask=None,
method='exact', subpixels=5):
(data, error), unit = process_quantities((data, error),
('data', 'error'))
if error is not None and error.shape != data.shape:
raise ValueError('error must have the same shape as data')
self.data = data
self.unit = unit
self.xycen = xycen
self.radii = self._validate_radii(radii)
self.error = error
self.mask = self._compute_mask(data, error, mask)
self.method = method
self.subpixels = subpixels
self.normalization_value = 1.0
def _validate_radii(self, radii):
radii = np.array(radii)
if radii.ndim != 1 or radii.size < 2:
raise ValueError('radii must be a 1D array and have at '
'least two values')
if radii.min() < 0:
raise ValueError('minimum radii must be >= 0')
if not np.all(radii[1:] > radii[:-1]):
raise ValueError('radii must be strictly increasing')
return radii
def _compute_mask(self, data, error, mask):
"""
Compute the mask array, automatically masking non-finite data or
error values.
"""
badmask = ~np.isfinite(data)
if error is not None:
badmask |= ~np.isfinite(error)
if mask is not None:
if mask.shape != data.shape:
raise ValueError('mask must have the same shape as data')
badmask &= ~mask # non-finite values not in input mask
mask |= badmask # all masked pixels
else:
mask = badmask
if np.any(badmask):
warnings.warn('Input data contains non-finite values (e.g., NaN '
'or inf) that were automatically masked.',
AstropyUserWarning)
return mask
@lazyproperty
def radius(self):
"""
The profile radius in pixels as a 1D `~numpy.ndarray`.
"""
raise NotImplementedError('Needs to be implemented in a subclass.')
@property
@abc.abstractmethod
def profile(self):
"""
The radial profile as a 1D `~numpy.ndarray`.
"""
raise NotImplementedError('Needs to be implemented in a subclass.')
@property
@abc.abstractmethod
def profile_error(self):
"""
The radial profile errors as a 1D `~numpy.ndarray`.
"""
raise NotImplementedError('Needs to be implemented in a subclass.')
@lazyproperty
def _circular_apertures(self):
"""
A list of `~photutils.aperture.CircularAperture` objects.
The first element may be `None`.
"""
from photutils.aperture import CircularAperture
apertures = []
for radius in self.radii:
if radius <= 0.0:
apertures.append(None)
else:
apertures.append(CircularAperture(self.xycen, radius))
return apertures
@lazyproperty
def _photometry(self):
"""
The aperture fluxes, flux errors, and areas as a function of
radius.
"""
fluxes = []
fluxerrs = []
areas = []
for aperture in self._circular_apertures:
if aperture is None:
flux, fluxerr = [0.0], [0.0]
area = 0.0
else:
flux, fluxerr = aperture.do_photometry(
self.data, error=self.error, mask=self.mask,
method=self.method, subpixels=self.subpixels)
area = aperture.area_overlap(self.data, mask=self.mask,
method=self.method,
subpixels=self.subpixels)
fluxes.append(flux[0])
if self.error is not None:
fluxerrs.append(fluxerr[0])
areas.append(area)
fluxes = np.array(fluxes)
fluxerrs = np.array(fluxerrs)
areas = np.array(areas)
if self.unit is not None:
fluxes <<= self.unit
fluxerrs <<= self.unit
return fluxes, fluxerrs, areas
[docs]
def normalize(self, method='max'):
"""
Normalize the profile.
Parameters
----------
method : {'max', 'sum'}, optional
The method used to normalize the profile:
* ``'max'`` (default):
The profile is normalized such that its maximum value is
1.
* ``'sum'``:
The profile is normalized such that its sum (integral) is
1.
"""
if method == 'max':
normalization = nanmax(self.profile)
elif method == 'sum':
normalization = nansum(self.profile)
else:
raise ValueError('invalid method, must be "max" or "sum"')
if normalization == 0:
warnings.warn('The profile cannot be normalized because the '
'max or sum is zero.', AstropyUserWarning)
else:
# normalization_values accumulate if normalize is run
# multiple times (e.g., different methods)
self.normalization_value *= normalization
# need to use __dict__ as these are lazy properties
self.__dict__['profile'] = self.profile / normalization
self.__dict__['profile_error'] = self.profile_error / normalization
[docs]
def unnormalize(self):
"""
Unnormalize the profile back to the original state before any
calls to `normalize`.
"""
self.__dict__['profile'] = self.profile * self.normalization_value
self.__dict__['profile_error'] = (self.profile_error
* self.normalization_value)
self.normalization_value = 1.0
[docs]
def plot(self, ax=None, **kwargs):
"""
Plot the profile.
Parameters
----------
ax : `matplotlib.axes.Axes` or `None`, optional
The matplotlib axes on which to plot. If `None`, then the
current `~matplotlib.axes.Axes` instance is used.
**kwargs : dict, optional
Any keyword arguments accepted by `matplotlib.pyplot.plot`.
Returns
-------
lines : list of `~matplotlib.lines.Line2D`
A list of lines representing the plotted data.
"""
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
lines = ax.plot(self.radius, self.profile, **kwargs)
ax.set_xlabel('Radius (pixels)')
ylabel = 'Profile'
if self.unit is not None:
ylabel = f'{ylabel} ({self.unit})'
ax.set_ylabel(ylabel)
return lines
[docs]
def plot_error(self, ax=None, **kwargs):
"""
Plot the profile errors.
Parameters
----------
ax : `matplotlib.axes.Axes` or `None`, optional
The matplotlib axes on which to plot. If `None`, then the
current `~matplotlib.axes.Axes` instance is used.
**kwargs : dict, optional
Any keyword arguments accepted by
`matplotlib.pyplot.fill_between`.
Returns
-------
lines : `matplotlib.collections.PolyCollection`
A `~matplotlib.collections.PolyCollection` containing the
plotted polygons.
"""
if self.profile_error.shape == (0,):
warnings.warn('Errors were not input', AstropyUserWarning)
return None
import matplotlib.pyplot as plt
if ax is None:
ax = plt.gca()
# set default fill_between facecolor
# facecolor must be first key, otherwise it will override color kwarg
# (i.e., cannot use setdefault here)
if 'facecolor' not in kwargs:
kws = {'facecolor': (0.5, 0.5, 0.5, 0.3)}
kws.update(kwargs)
else:
kws = kwargs
profile = self.profile
profile_error = self.profile_error
if self.unit is not None:
profile = profile.value
profile_error = profile_error.value
ymin = profile - profile_error
ymax = profile + profile_error
return ax.fill_between(self.radius, ymin, ymax, **kws)