Source code for photutils.background.background_2d

# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
This module defines classes to estimate the 2D background and background
RMS in an image.
"""

import warnings

import astropy.units as u
import numpy as np
from astropy.nddata import NDData, block_replicate, reshape_as_blocks
from astropy.stats import SigmaClip
from astropy.utils import lazyproperty
from astropy.utils.decorators import deprecated, deprecated_renamed_argument
from astropy.utils.exceptions import AstropyUserWarning
from scipy.ndimage import generic_filter

from photutils.aperture import RectangularAperture
from photutils.background.core import SExtractorBackground, StdBackgroundRMS
from photutils.background.interpolators import (BkgIDWInterpolator,
                                                BkgZoomInterpolator)
from photutils.utils import ShepardIDWInterpolator
from photutils.utils._parameters import as_pair
from photutils.utils._repr import make_repr
from photutils.utils._stats import nanmedian, nanmin

__all__ = ['Background2D']

__doctest_skip__ = ['Background2D']


[docs] class Background2D: """ Class to estimate a 2D background and background RMS noise in an image. The background is estimated using (sigma-clipped) statistics in each box of a grid that covers the input ``data`` to create a low-resolution, and possibly irregularly-gridded, background map. The final background map is calculated by interpolating the low-resolution background map. Invalid data values (i.e., NaN or inf) are automatically masked. .. note:: Better performance will generally be obtained if you have the `bottleneck`_ package installed. This acceleration also requires that the byte order of the input data array matches the byte order of the operating system. For example, the `astropy.io.fits` module loads data arrays as big-endian, even though most modern processors are little-endian. A big-endian array can be converted to native byte order ('=') in place using:: >>> data.byteswap(inplace=True) >>> data = data.view(data.dtype.newbyteorder('=')) One can also use, e.g.,:: >>> data = data.astype(float) but this will temporarily create a new copy of the array in memory. Parameters ---------- data : array_like or `~astropy.nddata.NDData` The 2D array from which to estimate the background and/or background RMS map. box_size : int or array_like (int) The box size along each axis. If ``box_size`` is a scalar then a square box of size ``box_size`` will be used. If ``box_size`` has two elements, they must be in ``(ny, nx)`` order. For best results, the box shape should be chosen such that the ``data`` are covered by an integer number of boxes in both dimensions. When this is not the case, see the ``edge_method`` keyword for more options. mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. Masked data are excluded from calculations. ``mask`` is intended to mask sources or bad pixels. Use ``coverage_mask`` to mask blank areas of an image. ``mask`` and ``coverage_mask`` differ only in that ``coverage_mask`` is applied to the output background and background RMS maps (see ``fill_value``). coverage_mask : array_like (bool), optional A boolean mask, with the same shape as ``data``, where a `True` value indicates the corresponding element of ``data`` is masked. ``coverage_mask`` should be `True` where there is no coverage (i.e., no data) for a given pixel (e.g., blank areas in a mosaic image). It should not be used for bad pixels (in that case use ``mask`` instead). ``mask`` and ``coverage_mask`` differ only in that ``coverage_mask`` is applied to the output background and background RMS maps (see ``fill_value``). fill_value : float, optional The value used to fill the output background and background RMS maps where the input ``coverage_mask`` is `True`. exclude_percentile : float in the range of [0, 100], optional The percentage of masked pixels allowed in a box for it to be included in the low-resolution map. If a box has more than ``exclude_percentile`` percent of its pixels masked then it will be excluded from the low-resolution map. Masked pixels include those from the input ``mask`` and ``coverage_mask``, non-finite ``data`` values, any padded area at the data edges, and those resulting from any sigma clipping. Setting ``exclude_percentile=0`` will exclude boxes that have any that have any masked pixels. Note that completely masked boxes are always excluded. In general, ``exclude_percentile`` should be kept as low as possible to ensure there are a sufficient number of unmasked pixels in each box for reasonable statistical estimates. The default is 10.0. filter_size : int or array_like (int), optional The window size of the 2D median filter to apply to the low-resolution background map. If ``filter_size`` is a scalar then a square box of size ``filter_size`` will be used. If ``filter_size`` has two elements, they must be in ``(ny, nx)`` order. ``filter_size`` must be odd along both axes. A filter size of ``1`` (or ``(1, 1)``) means no filtering. filter_threshold : int, optional The threshold value for used for selective median filtering of the low-resolution 2D background map. The median filter will be applied to only the background boxes with values larger than ``filter_threshold``. Set to `None` to filter all boxes (default). edge_method : {'pad', 'crop'}, optional This keyword will be removed in a future version and the default version of ``'pad'`` will always be used. The ``'crop'`` option has been strongly discouraged for some time now. Its usage creates a undesirable scaling of the low-resolution maps that leads to incorrect results. The method used to determine how to handle the case where the image size is not an integer multiple of the ``box_size`` in either dimension. Both options will resize the image for internal calculations to give an exact multiple of ``box_size`` in both dimensions. * ``'pad'``: pad the image along the top and/or right edges. This is the default and recommended method. Ideally, the ``box_size`` should be chosen such that an integer number of boxes is only slightly larger than the ``data`` size to minimize the amount of padding. * ``'crop'``: crop the image along the top and/or right edges. This method should be used sparingly, and it may be deprecated in the future. Best results will occur when ``box_size`` is chosen such that an integer number of boxes is only slightly smaller than the ``data`` size to minimize the amount of cropping. sigma_clip : `astropy.stats.SigmaClip` instance, optional A `~astropy.stats.SigmaClip` object that defines the sigma clipping parameters. If `None` then no sigma clipping will be performed. The default is to perform sigma clipping with ``sigma=3.0`` and ``maxiters=10``. bkg_estimator : callable, optional A callable object (a function or e.g., an instance of any `~photutils.background.BackgroundBase` subclass) used to estimate the background in each of the boxes. The callable object must take in a 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray` and have an ``axis`` keyword. Internally, the background will be calculated along ``axis=1`` and in this case the callable object must return a 1D `~numpy.ndarray`, where np.nan values are used for masked pixels. If ``bkg_estimator`` includes sigma clipping, it will be ignored (use the ``sigma_clip`` keyword here to define sigma clipping). The default is an instance of `~photutils.background.SExtractorBackground`. bkgrms_estimator : callable, optional A callable object (a function or e.g., an instance of any `~photutils.background.BackgroundRMSBase` subclass) used to estimate the background RMS in each of the boxes. The callable object must take in a 2D `~numpy.ndarray` or `~numpy.ma.MaskedArray` and have an ``axis`` keyword. Internally, the background RMS will be calculated along ``axis=1`` and in this case the callable object must return a 1D `~numpy.ndarray`, where np.nan values are used for masked pixels. If ``bkgrms_estimator`` includes sigma clipping, it will be ignored (use the ``sigma_clip`` keyword here to define sigma clipping). The default is an instance of `~photutils.background.StdBackgroundRMS`. interpolator : callable, optional A callable object (a function or object) used to interpolate the low-resolution background or background RMS image to the full-size background or background RMS maps. The default is an instance of `BkgZoomInterpolator`, which uses the `scipy.ndimage.zoom` function. Notes ----- Better performance will generally be obtained if you have the `bottleneck`_ package installed. If there is only one background box element (i.e., ``box_size`` is the same size as (or larger than) the ``data``), then the background map will simply be a constant image. .. _bottleneck: https://github.com/pydata/bottleneck """ @deprecated_renamed_argument('edge_method', None, '2.0.0') def __init__(self, data, box_size, *, mask=None, coverage_mask=None, fill_value=0.0, exclude_percentile=10.0, filter_size=(3, 3), filter_threshold=None, edge_method='pad', sigma_clip=SigmaClip(sigma=3.0, maxiters=10), bkg_estimator=SExtractorBackground(sigma_clip=None), bkgrms_estimator=StdBackgroundRMS(sigma_clip=None), interpolator=BkgZoomInterpolator()): if isinstance(data, (u.Quantity, NDData)): # includes CCDData self._unit = data.unit data = data.data else: self._unit = None # this is a temporary instance variable to store the input data self._data = self._validate_array(data, 'data', shape=False) self._data_dtype = self._data.dtype self._mask = self._validate_array(mask, 'mask') self.coverage_mask = self._validate_array(coverage_mask, 'coverage_mask') # box_size cannot be larger than the data array size self.box_size = as_pair('box_size', box_size, lower_bound=(0, 1), upper_bound=data.shape) self.fill_value = fill_value if exclude_percentile < 0 or exclude_percentile > 100: raise ValueError('exclude_percentile must be between 0 and 100 ' '(inclusive).') self.exclude_percentile = exclude_percentile self.filter_size = as_pair('filter_size', filter_size, lower_bound=(0, 1), check_odd=True) self.filter_threshold = filter_threshold if edge_method not in ('pad', 'crop'): raise ValueError('edge_method must be "pad" or "crop"') self.edge_method = edge_method self.sigma_clip = sigma_clip self.interpolator = interpolator # we perform sigma clipping as a separate step to avoid # calling it twice for the background and background RMS bkg_estimator.sigma_clip = None bkgrms_estimator.sigma_clip = None self.bkg_estimator = bkg_estimator self.bkgrms_estimator = bkgrms_estimator self._box_npixels = None self._params = ('box_size', 'coverage_mask', 'fill_value', 'exclude_percentile', 'filter_size', 'filter_threshold', 'edge_method', 'sigma_clip', 'bkg_estimator', 'bkgrms_estimator', 'interpolator') # store the interpolator keyword arguments for later use # (before self._data is deleted in self._calculate_stats) self._interp_kwargs = {'shape': self._data.shape, 'dtype': self._data.dtype, 'box_size': self.box_size, 'edge_method': self.edge_method} # perform the initial calculations to avoid storing large data # arrays and to keep the memory usage minimal (self._bkg_stats, self._bkgrms_stats, self._ngood) = self._calculate_stats() # this is used to selectively filter the low-resolution maps self._min_bkg_stats = nanmin(self._bkg_stats) # store a mask of the excluded mesh values (NaNs) in the # low-resolution maps self._mesh_nan_mask = np.isnan(self._bkg_stats) # add keyword arguments needed for BkgZoomInterpolator # BkgIDWInterpolator upscales the mesh based only on the good # pixels in the low-resolution mesh if isinstance(self.interpolator, BkgIDWInterpolator): self._interp_kwargs['mesh_yxcen'] = self._calculate_mesh_yxcen() self._interp_kwargs['mesh_nan_mask'] = self._mesh_nan_mask def __repr__(self): ellipsis = ('coverage_mask',) return make_repr(self, self._params, ellipsis=ellipsis) def __str__(self): ellipsis = ('coverage_mask',) return make_repr(self, self._params, ellipsis=ellipsis, long=True) def _validate_array(self, array, name, shape=True): """ Validate the input data, mask, and coverage_mask arrays. """ if name in ('mask', 'coverage_mask') and array is np.ma.nomask: array = None if array is not None: array = np.asanyarray(array) if array.ndim != 2: raise ValueError(f'{name} must be a 2D array.') if shape and array.shape != self._data.shape: raise ValueError(f'data and {name} must have the same shape.') return array def _apply_units(self, data): """ Apply units to the data. The units are based on the units of the input ``data`` array. Parameters ---------- data : `~numpy.ndarray` The input data array. Returns ------- data : `~numpy.ndarray` The data array with units applied. """ if self._unit is not None: data <<= self._unit return data def _combine_input_masks(self): """ Combine the input mask and coverage_mask. """ if self._mask is None and self.coverage_mask is None: return None if self._mask is None: return self.coverage_mask if self.coverage_mask is None: return self._mask mask = np.logical_or(self._mask, self.coverage_mask) del self._mask return mask def _combine_all_masks(self, mask): """ Combine the input masks (mask and coverage_mask) with the mask of invalid data values. """ input_mask = self._combine_input_masks() msg = ('Input data contains invalid values (NaNs or infs), which ' 'were automatically masked.') if input_mask is None: if np.any(mask): warnings.warn(msg, AstropyUserWarning) return mask total_mask = np.logical_or(input_mask, mask) if input_mask is not None: condition = np.logical_and(np.logical_not(input_mask), mask) if np.any(condition): warnings.warn(msg, AstropyUserWarning) return total_mask @lazyproperty def _good_npixels_threshold(self): """ The minimum number of required unmasked pixels in a box used for it to be included in the low-resolution map. For exclude_percentile=0, only boxes where nmasked=0 will be included. For exclude_percentile=100, all boxes will be included *unless* they are completely masked. Boxes that are completely masked are always excluded. """ return (1 - (self.exclude_percentile / 100.0)) * self._box_npixels def _sigmaclip_boxes(self, data, axis): """ Sigma clip the boxes along the specified axis. This method sigma clips the boxes along the specified axis and returns the sigma-clipped data. The input ``data`` is typically a 4D array where the first two dimensions represent the y and x positions of the boxes and the last two dimensions represent the y and x positions within each box. We perform sigma clipping as a separate step to avoid performing sigma clipping for both the background and background RMS estimators. Parameters ---------- data : `~numpy.ndarray` The 4D array of box data. axis : int or tuple of int The axis or axes along which to sigma clip the data. Returns ------- data : `~numpy.ndarray` The sigma-clipped data. """ with warnings.catch_warnings(): warnings.simplefilter('ignore', category=AstropyUserWarning) if self.sigma_clip is not None: data = self.sigma_clip(data, axis=axis, masked=False, copy=False) return data def _compute_box_statistics(self, data, axis=None): """ Compute the background and background RMS statistics in each box. Parameters ---------- data : `~numpy.ndarray` The 4D array of box data. axis : int or tuple of int, optional The axis or axes along which to compute the statistics. Returns ------- bkg : 2D `~numpy.ndarray` or float The background statistics in each box. bkgrms : 2D `~numpy.ndarray` or float The background RMS statistics in each box. """ data = self._sigmaclip_boxes(data, axis=axis) # make 2D arrays of the box statistics bkg = self.bkg_estimator(data, axis=axis) bkgrms = self.bkgrms_estimator(data, axis=axis) # mask boxes with too few unmasked pixels ngood = np.count_nonzero(~np.isnan(data), axis=axis) box_mask = ngood <= self._good_npixels_threshold if np.ndim(bkg) == 0: if box_mask: # single corner box # np.nan is float64; use np.float32 to prevent numpy from # promoting the output data dtype to float64 if the # input data is float32 bkg = np.float32(np.nan) bkgrms = np.float32(np.nan) else: bkg[box_mask] = np.nan bkgrms[box_mask] = np.nan return bkg, bkgrms, ngood def _calculate_stats(self): """ Calculate the background and background RMS statistics in each box. Parameters ---------- data : 2D `~numpy.ndarray` The 2D input data array. The data array is assumed to have been prepared by the ``_prepare_data`` method, where NaNs are used to mask invalid data values. Returns ------- bkg : 2D `~numpy.ndarray` The background statistics in each box. bkgrms : 2D `~numpy.ndarray` The background RMS statistics in each box. ngood : 2D `~numpy.ndarray` The number of unmasked pixels in each box. """ # if needed, copy the data to a float32 array to insert NaNs if self._data.dtype.kind != 'f': self._data = self._data.astype(np.float32) # automatically mask non-finite values that aren't already # masked and combine all masks mask = self._combine_all_masks(~np.isfinite(self._data)) self._box_npixels = np.prod(self.box_size) nboxes = self._data.shape // self.box_size y1, x1 = nboxes * self.box_size # core boxes - the part of the data array that is an integer # multiple of the box size # combine the last two axes for performance # Below we transform both the data and mask arrays to avoid # making multiple copies of the data (one to insert NaN and # another for the reshape). Only one copy of the data and mask # array is made (except for the extra corner). The boolean mask # copy is much smaller than the data array. # An explicit copy of the data array is needed to avoid # modifying the original data array if the shape of the data # array is (y1, x1) (i.e., box_size = data.shape). core = reshape_as_blocks(self._data[:y1, :x1].copy(), self.box_size) core_mask = reshape_as_blocks(mask[:y1, :x1], self.box_size) core = core.reshape((*nboxes, -1)) core_mask = core_mask.reshape((*nboxes, -1)) core[core_mask] = np.nan bkg, bkgrms, ngood = self._compute_box_statistics(core, axis=-1) extra_row = y1 < self._data.shape[0] extra_col = x1 < self._data.shape[1] if self.edge_method == 'pad' and (extra_row or extra_col): if extra_row: # extra row of boxes # here we need to make a copy of the data array to avoid # modifying the original data array # move the axes and combine the last two for performance row_data = self._data[y1:, :x1].copy() row_mask = mask[y1:, :x1] row_data[row_mask] = np.nan row_data = reshape_as_blocks(row_data, (1, self.box_size[1])) row_data = np.moveaxis(row_data, 0, -1) row_data = row_data.reshape((*row_data.shape[:-2], -1)) row_bkg, row_bkgrms, row_ngood = self._compute_box_statistics( row_data, axis=-1) if extra_col: # extra column of boxes # here we need to make a copy of the data array to avoid # modifying the original data array # move the axes and combine the last two for performance col_data = self._data[:y1, x1:].copy() col_mask = mask[:y1, x1:] col_data[col_mask] = np.nan col_data = reshape_as_blocks(col_data, (self.box_size[0], 1)) col_data = np.transpose(col_data, (0, 3, 1, 2)) col_data = col_data.reshape((*col_data.shape[:-2], -1)) col_bkg, col_bkgrms, col_ngood = self._compute_box_statistics( col_data, axis=-1) if extra_row and extra_col: # extra corner box -- append to extra column # here we need to make a copy of the data array to avoid # modifying the original data array corner_data = self._data[y1:, x1:].copy() corner_mask = mask[y1:, x1:] corner_data[corner_mask] = np.nan crn_bkg, crn_bkgrms, crn_ngood = self._compute_box_statistics( corner_data, axis=None) col_bkg = np.vstack((col_bkg, crn_bkg)) col_bkgrms = np.vstack((col_bkgrms, crn_bkgrms)) col_ngood = np.vstack((col_ngood, crn_ngood)) # combine the core and extra boxes to construct the # complete 2D bkg and bkgrms arrays if extra_row: bkg = np.vstack([bkg, row_bkg[:, 0]]) bkgrms = np.vstack([bkgrms, row_bkgrms[:, 0]]) ngood = np.vstack([ngood, row_ngood[:, 0]]) if extra_col: bkg = np.hstack([bkg, col_bkg]) bkgrms = np.hstack([bkgrms, col_bkgrms]) ngood = np.hstack([ngood, col_ngood]) if np.all(np.isnan(bkg)): raise ValueError('All boxes contain <= ' f'{self._good_npixels_threshold} good pixels. ' 'Please check your data or increase ' '"exclude_percentile" to allow more boxes to ' 'be included.') # we no longer need the copy of the input array del self._data return bkg, bkgrms, ngood def _interpolate_grid(self, data, n_neighbors=10, eps=0.0, power=1.0, reg=0.0): """ Fill in any NaN values in the low-resolution 2D mesh background and background RMS images. IDW interpolation is used to replace the NaN pixels. This is required to use a regular-grid interpolator to expand the low-resolution image to the full size image. Parameters ---------- data : 2D `~numpy.ndarray` A 2D array of the box statistics. n_neighbors : int, optional The maximum number of nearest neighbors to use during the interpolation. eps : float, optional Set to use approximate nearest neighbors; the kth neighbor is guaranteed to be no further than (1 + ``eps``) times the distance to the real *k*-th nearest neighbor. See `scipy.spatial.cKDTree.query` for further information. power : float, optional The power of the inverse distance used for the interpolation weights. See the Notes section for more details. reg : float, optional The regularization parameter. It may be used to control the smoothness of the interpolator. See the Notes section for more details. Returns ------- result : 2D `~numpy.ndarray` A 2D array of the box values where NaN values have been filled by IDW interpolation. """ if not np.any(np.isnan(data)): # output integer dtype if input data was integer dtyle if data.dtype != self._data_dtype: data = data.astype(self._data_dtype) return data mask = ~np.isnan(data) idx = np.where(mask) yx = np.column_stack(idx) interp_func = ShepardIDWInterpolator(yx, data[mask]) # interpolate the masked pixels where data is NaN idx = np.where(np.isnan(data)) yx_indices = np.column_stack(idx) interp_values = interp_func(yx_indices, n_neighbors=n_neighbors, power=power, eps=eps, reg=reg) interp_data = np.copy(data) # copy to avoid modifying the input data interp_data[idx] = interp_values # output integer dtype if input data was integer dtyle if interp_data.dtype != self._data_dtype: interp_data = interp_data.astype(self._data_dtype) return interp_data def _selective_filter(self, data): """ Filter only pixels above ``filter_threshold`` in a low- resolution 2D image. The pixels to be filtered are determined by applying the ``filter_threshold`` to the low-resolution background mesh. The same pixels are filtered in both the background and background RMS meshes. Parameters ---------- data : 2D `~numpy.ndarray` A 2D array of mesh values. Returns ------- result : 2D `~numpy.ndarray` The filtered 2D array of mesh values. """ data_filtered = np.copy(data) bkg_stats_interp = self._interpolate_grid(self._bkg_stats) yx_indices = np.column_stack( np.nonzero(bkg_stats_interp > self.filter_threshold)) yfs, xfs = self.filter_size hyfs, hxfs = yfs // 2, xfs // 2 for i, j in yx_indices: yidx0 = max(i - hyfs, 0) yidx1 = min(i - hyfs + yfs, data.shape[0]) xidx0 = max(j - hxfs, 0) xidx1 = min(j - hxfs + xfs, data.shape[1]) data_filtered[i, j] = np.median(data[yidx0:yidx1, xidx0:xidx1]) return data_filtered def _filter_grid(self, data): """ Apply a 2D median filter to a low-resolution 2D image. Parameters ---------- data : 2D `~numpy.ndarray` A 2D array of mesh values. Returns ------- result : 2D `~numpy.ndarray` The filtered 2D array of mesh values. """ if tuple(self.filter_size) == (1, 1): return data if (self.filter_threshold is None or self.filter_threshold < self._min_bkg_stats): # filter the entire array filtdata = generic_filter(data, nanmedian, size=self.filter_size, mode='constant', cval=np.nan) else: # selectively filter the array filtdata = self._selective_filter(data) return filtdata def _calculate_mesh_yxcen(self): """ Calculate the y and x positions of the centers of the low- resolution background and background RMS meshes with respect to the input data array. This is used by the IDW interpolator to expand the low- resolution mesh to the full-size image. It is also used to plot the mesh boxes on the input image. """ mesh_idx = np.where(~self._mesh_nan_mask) # good mesh indices box_cen = (self.box_size - 1) / 2.0 return (mesh_idx * self.box_size[:, None]) + box_cen[:, None] @lazyproperty def background_mesh(self): """ The low-resolution background image. This image is equivalent to the low-resolution "MINIBACK" background map check image in SourceExtractor. """ data = self._interpolate_grid(self._bkg_stats) if ('background_rms_mesh' in self.__dict__ or self.filter_threshold is None): self._bkg_stats = None # delete to save memory return self._apply_units(self._filter_grid(data)) @lazyproperty def background_rms_mesh(self): """ The low-resolution background RMS image. This image is equivalent to the low-resolution "MINIBACK_RMS" background rms map check image in SourceExtractor. """ data = self._interpolate_grid(self._bkgrms_stats) self._bkgrms_stats = None # delete to save memory return self._apply_units(self._filter_grid(data)) @property @deprecated('2.0.0') def background_mesh_masked(self): """ The low-resolution background image prior to any interpolation to fill NaN values. The array has NaN values where meshes were excluded. """ data = self.background_mesh.copy() data[self._mesh_nan_mask] = np.nan return data @property @deprecated('2.0.0') def background_rms_mesh_masked(self): """ The low-resolution background RMS image prior to any interpolation to fill NaN values. The array has NaN values where meshes were excluded. """ data = self.background_rms_mesh.copy() data[self._mesh_nan_mask] = np.nan return data @property @deprecated('2.0.0', alternative='npixels_mesh') def mesh_nmasked(self): """ A 2D array of the number of masked pixels in each mesh. NaN values indicate where meshes were excluded. """ data = (np.prod(self.box_size) - self._ngood).astype(float) data[self._mesh_nan_mask] = np.nan return data @property def npixels_mesh(self): """ A 2D array of the number pixels used to compute the statistics in each mesh. """ return self._ngood @property def npixels_map(self): """ A 2D map of the number of pixels used to compute the statistics in each mesh, resized to the shape of the input image. Note that the returned value is (re)calculated each time this property is accessed. If you need to access the returned image multiple times, you should store the result in a variable. """ npixels_map = block_replicate(self.npixels_mesh, self._interp_kwargs['box_size'], conserve_sum=False) return npixels_map[:self._interp_kwargs['shape'][0], :self._interp_kwargs['shape'][1]] @lazyproperty def background_median(self): """ The median value of the 2D low-resolution background map. This is equivalent to the value SourceExtractor prints to stdout (i.e., "(M+D) Background: <value>"). """ return self._apply_units(np.median(self.background_mesh)) @lazyproperty def background_rms_median(self): """ The median value of the low-resolution background RMS map. This is equivalent to the value SourceExtractor prints to stdout (i.e., "(M+D) RMS: <value>"). """ return self._apply_units(np.median(self.background_rms_mesh)) def _calculate_image(self, data): """ Calculate the full-sized background or background rms image from the low-resolution mesh. """ data = self.interpolator(data, **self._interp_kwargs) if self.coverage_mask is not None: data[self.coverage_mask] = self.fill_value return self._apply_units(data) @property def background(self): """ A 2D `~numpy.ndarray` containing the background image. Note that the returned value is (re)calculated each time this property is accessed. If you need to access the background image multiple times, you should store the result in a variable. """ return self._calculate_image(self.background_mesh) @property def background_rms(self): """ A 2D `~numpy.ndarray` containing the background RMS image. Note that the returned value is (re)calculated each time this property is accessed. If you need to access the background rms image multiple times, you should store the result in a variable. """ return self._calculate_image(self.background_rms_mesh)
[docs] def plot_meshes(self, *, ax=None, marker='+', markersize=None, color='blue', alpha=None, outlines=False, **kwargs): """ Plot the low-resolution mesh boxes on a matplotlib Axes instance. Parameters ---------- ax : `matplotlib.axes.Axes` or `None`, optional The matplotlib axes on which to plot. If `None`, then the current `~matplotlib.axes.Axes` instance is used. marker : str, optional The `matplotlib marker <https://matplotlib.org/stable/api/markers_api.html>`_ to use to mark the center of the boxes. markersize : float, optional The box center marker size in ``points ** 2`` (typographical points are 1/72 inch) . The default is ``matplotlib.rcParams['lines.markersize'] ** 2``. If set to 0, then the box center markers will not be plotted. color : str, optional The color for the box center markers and outlines. alpha : float, optional The alpha blending value, between 0 (transparent) and 1 (opaque), for the box center markers and outlines. outlines : bool, optional Whether or not to plot the box outlines. **kwargs : dict, optional Any keyword arguments accepted by `matplotlib.patches.Patch`, which is used to draw the box outlines. Used only if ``outlines`` is True. """ import matplotlib.pyplot as plt kwargs['color'] = color if ax is None: ax = plt.gca() mesh_xycen = np.flipud(self._calculate_mesh_yxcen()) ax.scatter(*mesh_xycen, s=markersize, marker=marker, color=color, alpha=alpha) if outlines: xycen = np.column_stack(mesh_xycen) apers = RectangularAperture(xycen, w=self.box_size[1], h=self.box_size[0], theta=0.0) apers.plot(ax=ax, alpha=alpha, **kwargs)